
remote sensing  

Article

Intercalibration of MERIS, MODIS, and OLCI Satellite Imagers
for Construction of Past, Present, and Future Cyanobacterial
Biomass Time Series

Timothy T. Wynne 1 , Sachidananda Mishra 1,2, Andrew Meredith 1,2, R. Wayne Litaker 1,2

and Richard P. Stumpf 1,*

����������
�������

Citation: Wynne, T.T.; Mishra, S.;

Meredith, A.; Litaker, R.W.; Stumpf,

R.P. Intercalibration of MERIS,

MODIS, and OLCI Satellite Imagers

for Construction of Past, Present, and

Future Cyanobacterial Biomass Time

Series. Remote Sens. 2021, 13, 2305.

https://doi.org/10.3390/rs13122305

Academic Editor: Jin Wu

Received: 30 April 2021

Accepted: 9 June 2021

Published: 12 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 National Centers for Coastal Ocean Science, National Ocean Service, National Oceanic and Atmospheric
Administration, 1305 East-West Highway, Silver Spring, MD 20910, USA; timothy.wynne@noaa.gov (T.T.W.);
sachi.mishra@noaa.gov (S.M.); andrew.meredith@noaa.gov (A.M.); wayne.r.litaker@noaa.gov (R.W.L.)

2 CSS, Inc., Fairfax, VA 22030, USA
* Correspondence: richard.stumpf@noaa.gov

Abstract: Satellite imagery has been used to monitor and assess Harmful Algal Blooms (HABs),
specifically, cyanobacterial blooms in Lake Erie (the USA and Canada) for over twelve years. In
recent years, imagery has been applied to the other Great Lakes as well as other U.S. lakes. The
key algorithm used in this monitoring system is the cyanobacterial index (CI), a measure of the
chlorophyll found in cyanobacterial blooms. The CI is a “spectral shape” (or curvature) algorithm,
which is a form of the second derivative around the 681 nm (MERIS/OLCI) or 678 nm (MODIS) band,
which is robust and implicitly includes an atmospheric correction, allowing reliable use for many
more scenes than analytical algorithms. Monitoring of cyanobacterial blooms with the CI began
with the European Space Agency’s (ESA) Medium Resolution Imaging Spectrometer (MERIS) sensor
(2002–2012). With the loss of data from MERIS in the spring of 2012, the monitoring system shifted to
using NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS). MODIS has bands that
allow computation of a CI product, which was intercalibrated with MERIS at the time to establish
a conversion of MODIS CI to MERIS CI. In 2016, ESA launched the Ocean and Land Color Imager
(OLCI), the replacement for MERIS, on the Sentinel-3 spacecraft. MODIS can serve two purposes. It
can provide a critical data set for the blooms of 2012–2015, and it offers a bridge from MERIS to OLCI.
We propose a basin-wide integrated technique for intercalibrating the CI algorithm from MODIS
to both MERIS and OLCI. This method allowed us to intercalibrate OLCI CI to MERIS CI, which
would then allow the production of a 20-year and ongoing record of cyanobacterial bloom activity.
This approach also allows updates as sensor calibrations change or new sensors are launched, and it
could be readily applied to spectral shape algorithms.

Keywords: intercalibration; MERIS; OLCI; MODIS; cyanobacteria; remote sensing; great lakes;
Harmful Algal Blooms (HABs)

1. Introduction

Blooms of cyanobacteria are generally considered a harbinger for anthropogenic
eutrophication [1]. Potentially massive blooms can have long durations and detrimental
environmental and human health impacts [2]. Cyanobacterial blooms are often toxic and
can contribute to hypoxia when the blooms senesce and increase the biological oxygen
demand. These blooms have a particular affinity for warm stratified water, and as such,
blooms of cyanobacteria may become more prevalent in the context of a warming climate [3].
Cyanobacteria can produce various toxins (such as microcystins, anatoxins, and saxitoxin)
that pose a health risk and cause mortalities in domestic and wild animal populations [4].
Additionally, several species have compounds such as geosmin that can cause taste and
odor issues in drinking water. As a result of these detrimental influences, cyanobacterial
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blooms are classified as Harmful Algal Blooms (HAB) and should be monitored to reduce
potential deleterious impacts.

Perhaps the most effective monitoring, detection, and assessment tool for describing
cyanobacterial bloom dynamics is synoptic remote sensing [5,6]. In order to detect any
significant increase in cyanobacterial bloom concentration and frequency, there must be an
effective and robust algorithm to estimate the extent and severity of these blooms. After an
effective algorithm is determined, there needs to be a way to merge the detection technique
across different sensors as new ones are deployed and older ones cease operations. These
satellite intercalibrations work under the basic premise that two instruments should make
identical observations over the same place and time with consistent spatial and spectral
responses and identical view angles [7]. Obviously, this is impossible in a real-world
situation. However, it is possible to compensate for any error effect by applying a correction
if biases are small and the relationship between the two remotely sensed parameters is
linear. Many intercalibration studies have been conducted using consistent, bright targets
as the intermediary. For example, Yu et al. [8] use the Sonoran Desert, a consistently
bright target that is visible to both the GOES-East and GOES-West satellites, to perform an
intercalibration between the two satellites based on getting the same reflectance from each
sensor. Bouvet et al. [9] describe an important new calibration network (The Radiometric
Calibration Network; RadCalNet) that can be used for vicarious calibration based on
a set of reference sites of relatively stable surface reflectance in different parts of the
world. This network is an important advancement in calibration for land targets. The
aquatic environment is far too dynamic for a similar correction technique (and also, the
MODIS ocean color bands saturate over bright land targets). A more typical approach for
aquatic applications is a point-by-point or pixel-to-pixel matchup [10,11]. The pixel-to-
pixel matchup has some caveats. Spatial heterogeneity in water bodies can be substantial
and subject to change. Instrument characteristics (ground field-of-view, sensor response
functions and others) can all introduce mismatches between sensors even when viewing
the same point on the water. The result is noise and biases in the resulting comparison.
Here, we propose a technique using pixel integration across the cyanobacterial blooms
detected within a basin as a means of reducing analytical error. We compare this technique
with the more traditional pixel-to-pixel intercalibration analysis.

1.1. CI Algorithm Usage

Since 2009, the National Oceanic and Atmospheric Administration (NOAA) has re-
leased short-term (<1 week) forecasts of cyanobacterial blooms in the western basin of
Lake Erie [12]. The primary product used is a satellite proxy for cyanobacterial biomass
called the cyanobacterial index (CI). The CI has been used extensively in various freshwater
systems throughout the United States [13–16]. While the algorithm was initially developed
by Wynne et al. [17,18] for the MERIS sensor on-board the Envisat spacecraft, it has since
been successfully applied to MODIS [10,11]. This was necessary as the Envisat spacecraft
ceased operation in April 2012. In early 2016, ESA launched the follow-on mission to
MERIS, the Ocean and Land Color Imager (OLCI) on the Sentinel 3A spacecraft that is now
operated by the European Organization for the Exploration of Meteorological Satellites
(EUMETSAT). A second OLCI sensor was launched on the Sentinel 3B satellite in 2018
(Figure 1). The MODIS sensor is deployed on two spacecraft: Terra (launched December
1999) and Aqua (launched May 2002). Both MODIS sensors are well past their designed
mission life and could become inoperable at any time. The OLCI and MERIS sensors are
less noisy and have a higher spatial resolution (for MERIS, high-resolution images were
only available when specifically recorded or captured by direct broadcast [16]) and would
generally be preferred to MODIS for monitoring cyanobacterial blooms [19]. As a result, it
is advantageous to develop a way to calibrate the CI algorithm among the three sensors to
create a seamless time-series blending the MODIS, MERIS, and OLCI sensors. Having a
method for comparing the CI values between sensors is imperative as it could help direct
monitoring of cyanobacterial blooms over decadal timescales and address the efficacy of
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management decisions designed to decrease the detrimental impacts of cyanobacterial
blooms. Furthermore, having a technique to compare algorithms across remotely sensed
platforms satisfactorily could be beneficial to intercalibrating other biogeophysical algo-
rithms between sensors. Having interoperability between sensors allows for increased
observational frequency, as well as an increase in spatial coverage. This will assist in
overcoming data gaps due to clouds, orbital patterns, or sunglint.
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Figure 1. The time period when each sensor was actively collecting data. An arrow indicates that the sensor was still
collecting data at the time of this writing.

The process described here has three steps: first, to intercalibrate the CI product
between MERIS and MODIS; second, to intercalibrate MODIS-to-OLCI CI; third, to use
MODIS as a bridge to establish a relationship between OLCI-to-MERIS CI (Figure 1).

1.2. Characteristics of the MODIS, OLCI, and MERIS Sensors

The characteristics of the three sensors that are relevant to this study are described
in Table 1. The OLCI, MERIS, and MODIS Terra sensors all have overpass times of ap-
proximately 10:30 a.m. local time. The MODIS Aqua sensor has an overflight time in
the afternoon, approximately 3 h later. This time lag is sufficiently long to allow bloom
locations to shift, introducing a significant bias when scenes from this sensor are compared
to comparable ones collected during the earlier OLCI and MERIS overpasses. To ensure
the greatest similarity in data collection in space and time [7], only the MODIS Terra data
will be used in this study for intercalibrating the different satellite sensors. Consequently,
any reference to the MODIS sensor onboard the Terra satellite will be referred hereafter as
MODIST. The few references the MODIS instrument on the Aqua satellite will be denoted
as MODIS-Aqua.

MODIST has an exact orbital repeat time of 16 days on a 705 km high orbit in descend-
ing node. The MERIS sensor has a repeat time of 35 days, which allows global coverage
in ~3 days at an orbit height of 800 km. The OLCI sensor has a repeat time of 27 days at
an orbital height of 815 km. OLCI has a spatial resolution of 300 m, as did MERIS when
data was collected in the Full Resolution (FR) mode. FR collection was not routine over
the USA and Canada until 2008 when the Canadian Center for Remote Sensing began
acquiring direct broadcast data. The MERIS data set was routinely resampled onboard
to a 1200-m spatial resolution in the Reduced Resolution (RR) mode. The RR data was
more reliably archived and will be used here, as the FR data was not reliably archived
over much of North America. While the algorithm has been applied successfully to all
three sensors (OLCI, MODIS, and MERIS) in a variety of water bodies, the validation of the
algorithm is not the focus of this manuscript. For more detailed results of the algorithmic
performance with these sensors, the reader is directed to Wynne et al. [19] for a detailed
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look into MODIS, Wynne et al. [18] for validation of MERIS, and Mishra et al. [16] for
application to OLCI.

Table 1. The sensor spectral and spatial resolution of the bands used in this study. The center wavelength is the input used
in Equations (1) and (2).

Sensor Band Range (nm) Center
Wavelength (nm) Band Width (nm) Native Spatial

Resolution (m) Band Number

MERIS (λ1) 660–670 665 10 1200 7

MERIS (λ2) 677.5–685 681 7.5 1200 8

MERIS (λ3) 703.75–713.75 709 10 1200 9

OLCI (λ1) 660–670 665 10 300 8

OLCI (λ2) 677.5–685 68 7.5 300 10

OLCI (λ3) 703.75–713.75 709 10 300 11

MODIST (λ1) 662–672 667 10 1000 13

MODIST (λ2) 673–683 678 10 1000 14

MODIST (λ3) 743–753 748 10 1000 15

1.3. Study Area

The Laurentian Great Lakes lie between the border of Canada and the United States
and feature three catchments that are routinely affected by cyanobacterial blooms: western
Lake Erie, Saginaw Bay, and Green Bay [20] (Figure 2). These are large water bodies that
have been routinely experienced cyanobacterial blooms over the last 20 years and will
be the regions of interest for this study. These lakes are used by millions of people to
supply drinking water, and cyanobacterial blooms can be detrimental to human health.
For example, in 2014, the metropolitan area of Toledo, OH (USA), issued a “Do Not Drink”
order on its municipal water supply due to contamination from the biotoxin, microcystin,
caused by cyanobacterial blooms [21]. Green Bay and Lake Erie are separated by over
500 km and do not necessarily appear in the same swath on MERIS (1150 km) or OLCI
(1270 km). The CI algorithm has been routinely run on all three basins to monitor and
detect cyanobacterial blooms [22]. Western Lake Erie has the largest blooms of the three
catchments, and these blooms exhibit a large degree of interannual variability in size and
severity (interannual variability is >20 fold) [19]. Saginaw Bay has intermediate-sized
blooms with a small degree of interannual variability [19]. Green Bay exhibits the smallest
blooms of the three basins, with a high degree of interannual variability in its cyanobacterial
biomass [20]. These three regions will be used to make the three CI intercalibration factors
(MERIS-to-MODIST, MODIST-to-OLCI, and MERIS-to-OLCI). Using three distinct basins
in three different lakes (Figure 2) will yield a more robust dataset as opposed to using only
one single basin. All three basins are shallow, relatively warm, eutrophic environments
that have the preponderance of their nutrients delivered by a single river. The Fox River
supplies 60% of nutrients into Green Bay [23], the Saginaw River supplies approximately
90% of the nutrients into Saginaw Bay [24], and the Maumee River, along with the smaller
Cuyahoga and Sandusky Rivers, supplies approximately half of the nutrients into western
Lake Erie [25] (Figure 2).
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2. Methods
2.1. Algorithm

The cyanobacteria index (CI) is the algorithm that will be evaluated here. It has
been used for over a decade to monitor for cyanobacteria in freshwater bodies. The CI
algorithm [17,18] is defined as:

CI = −SS(λ2) (1)

where SS is the spectral shape around the λ2 band (about 680 nm) that corresponds to the
strong chlorophyll-a absorption peak (Table 1). The SS takes the form of a second derivative
and is sometimes called a baseline algorithm:

SS = ρ(λ2)− ρ(λ1) + {ρ(λ1)− ρ(λ3)} ×
λ2 − λ1

λ3 − λ1
(2)

where ρ is the dimensionless Rayleigh-corrected surface reflectance determined from the
instrument-observed top-of-atmosphere radiance by only removing Rayleigh radiances
and molecular absorption transmission loss, both corrected for elevation. See Table 1 for
band information for each of the sensors such as ρ, and CI is dimensionless.

MERIS-reduced resolution L1B, OLCI-reduced resolution L1B, and Terra L0 imagery
were downloaded and processed with NOAA’s Satellite Automated Processing System
(SAPS), with methods presented in Wynne et al. [26]. SAPS used the NASA l2gen “rho_s”
option to generate the Rayleigh-corrected reflectance, ρ, used in Equation (2). These were
mapped, using nearest neighbor, to the same Albers Equal Area protection with a pixel
size of 1100 m [26] (Table 1). The results allow consistent comparison of the three sensors.

2.2. Image processing
2.2.1. How Image Pairs Were Selected

For calibration, high-quality image pairs with well-defined cyanobacterial blooms are
needed to avoid any artifacts or biases resulting from noise such as sunglint, thin clouds,
haze, etc. Image pairs were selected using a sequence of steps. Dates with same-day pairs
during blooms were identified. The cyanobacterial bloom season in the Laurentian Great
Lakes lasts from 1 June to 31 October and is generally highest in July–October [27]. All
images shown here were chosen from the July–October time period from 2002 through 2011
for the MERIS–MODIST matchups and from 2016 to 2019 for the OLCI–MODIST matchups.
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If one of the images was substantially off-nadir or experienced adjacency effects [28,29],
the image pair was rejected. Each image pair was also rejected if the wind speed during
acquisition time from either sensor exceeded 8 m s−1 to avoid perceived changes in surface
cyanobacterial biomass due to vertical mixing [18]. The remaining image pairs were
screened by visually inspecting the RGB true color composites (which are all processed
with the same enhancement). Evidence of extensive clouds, cloud shadows, or sun glint in
the bloom area in either image led to a rejection of that image pair. Each image pair used
for the MODIST-to-MERIS intercalibration is listed in Supplementary Table S1 (n = 42), and
each image pair used for the MODIST-to-OLCI intercalibration is listed in Supplementary
Table S2 (n = 19). Example image pairs that were rejected based on a visual inspection are
described in Supplementary Table S3.

The time differences of the final image pairs were considered acceptable. The largest
time difference in the overflight times between the two different spacecraft was 78 min
(Figure 3). The average time difference between MERIS and MODIST’s data acquisition
was 26 min, with MODIST having an earlier overpass 19 times and MERIS having an earlier
overpass 23 times. The OLCI and MODIST image pairs were similar with an average time
difference between image acquisition of 25 min, with MODIST having an earlier overpass 8
times and OLCI having an earlier overpass 11 times.
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2.2.2. Image Quality Assurance

Radiance signal from the adjacent area surrounding a pixel (the object pixel) can prop-
agate into the sensor field-of-view due to subsequent scattering and cause perturbations in
the spectral signature at the pixel in question. This process is usually termed as adjacency
effect [29]. In open ocean waters, the adjacency effect may not be an issue due to the spatial
homogeneity. However, in coastal waters, it can affect the radiometric quality of the image
data. In this study, adjacency issues affecting pixel quality were dealt with as follows.
Initially, a 3 × 3 pixel neighborhood surrounding each pixel in the image was identified.
Next, if at least one invalid pixel was identified within the 3 × 3 pixel neighborhood as
being invalid due to clouds, sun glint, adjacency to land, etc., that pixel was flagged as
unusable. When any two images were subsequently being compared as part of the satellite
sensor intercalibration analysis, only the pixel pairs that did not suffer for adjacency effects
were used. This assured only the highest quality data set was used in the subsequent
analyses.

2.3. Pixel to Pixel Technique

The most common technique used for satellite intercalibration is the pixel-to-pixel
technique. In this method, the value of corresponding pixels in regions of interest from
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paired images collected by two different sensors are extracted. In this study, CI values
from paired pixels were extracted from the images (MODIST/MERIS or MODIST/OCLI),
and least-squares regression analyses were performed. The regression line was forced
through the origin, and if this was not so, the low values on the low end might become
less than the slope intercept, rendering them meaningless. The intercalibration correction
factor (assuming that the relationship of the data pairs passes through the origin) was
the slope of the best fit linear regression line of the CI values for each sensor pair. This
allowed determining intercalibration factors, which allowed the CI values between sensors
to be interconverted [10,11,30]. Henceforth, this approach will be referred to as the pixel
technique.

2.4. Integrated Pixel Technique

An alternative to cross-validating satellite imagery on a pixel-to-pixel basis is instead
to compare the integrated pixel values across the same regions from paired MERIS, OLCI,
or MODIST images. This approach involves first identifying within paired satellite images
all pairs of pixels that both have a positive CI value and have no image quality issues in
either image (Section 2.2.2). These pixels were then summed to produce an aggregate, or
integrated, CI value for each image. This is not an averaging but, instead, a sum of all of
the CI positive values from each image. These pairs of summed CI values were then used
as the basis for least-square regression analyses to determine the CI relationships between
the MODIST, MERIS, and OLCI sensors. As a result, each image pair produces a single pair
of values, unlike the pixel technique, which may produce many pairs of values for each
pair of images. Henceforth, this approach will be referred to as the integrated technique.
As in the pixel technique, the regression line was forced through the origin, and if this was
not so, the low values on the low end might become less than the slope intercept, rendering
them meaningless.

The integrated technique has a major advantage over the pixel technique. It inherently
reduces one key source of error, the mismatch from the spatiotemporal change in bloom dis-
tribution between the two sensor overpass times. Cyanobacterial blooms often are patchy
with considerable spatial heterogeneity. The dynamic nature of the coastal environment
can cause significant changes between overpasses due to shifts in these patches. These
changes can cause mismatches in pixel-to-pixel inter-comparisons. However, an integrated
technique would be expected to reduce the error from the spatiotemporal variability of the
bloom by aggregating across the patchiness in the CI field.

2.5. Model Evaluation

Leave-one-out cross-validation, often used in data-scarce scenarios, is an n-fold cross-
validation approach where n is the total number of samples in the dataset. In each fold, the
process leaves one sample out for model validation and uses the remaining samples for
model calibration, making it similar to a jack-knife estimation [31]. Thus, in each iteration,
the model is calibrated with (n−1) data points and validated on the left-out single data
point, allowing a validation for each data point. Similar to that idea, here, we followed
the leave-one-lake-out validation approach for cross-validation. Least-square regression
models for sensor intercalibration were adjusted, using data from two study regions (e.g.,
Western Lake Erie and Saginaw Bay) and validated using the third region (e.g., Green
Bay) as an independent dataset, giving a “leave-one-lake-out” approach. The model (M)
was then applied to the appropriate sensor (typically MODIST) for the third lake, and the
MERIS or OLCI values for that lake were used as the observed (O) reference data. Thus, the
models were calibrated three times, using data from pairs of lakes in combination, as well as
validated three times. This “leave-one-lake-out” approach demonstrated the robustness of
the regression coefficients or correction factors with a geographically independent data set.
Additionally, instead of a single slope, this validation approach provided an uncertainty
range around the mean slopes.
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The arithmetic mean of the regression coefficients from the three sets of calibration
coefficients relating the MERIS-to-MODIST CI and OLCI-to-MODIST CI were finally used
to convert OLCI CI observations to MERIS CI-equivalent observations, thereby connecting
the MERIS and OLCI time-series. Calibrating for combinations of each of the three regions
separately allows an assessment of calibration consistency and validation with the third
region.

Error Metrics

We used bias and Mean Absolute Error (MAE) as error metrics [32] for evaluating the
calibrations. Bias quantifies the systematic error or the difference between the modeled
value (M) (in this case, the MERIS/OLCI CI modeled from MODIST CI) and the observed
or reference value (O) (actual MERIS/OLCI CI). As the analysis used log-transformed data,
the mean multiplicative bias was determined:

Mean bias = 10(
1
n ∑n

i=1 (log10 (Mi)− log10(Oi))) (3)

where M is the modeled CI; O is the observed; n is the sample size (number of pixels for
the pixel technique or number of image pairs for the integrated image technique). The
closer the multiplicative bias is to a value of 1, the less bias the comparisons have and the
better the model accuracy. For example, a bias of 1.2 indicates a model that overestimates
by about 20%, and a mean bias of 0.8 indicates a model that underestimates by about 20%
(there is not an exact match between multiplicative error and percentage error [32].

The MAE captures the error magnitude, highlighting the absolute error between the
observed and modeled quantities. The MAE is defined as:

MAE = 10(
1
n ∑n

i=1 |log10 (Mi)− log10(Oi)|) (4)

Equation (4) uses the same variables as Equation (3). The MAE in Equation (4) is
multiplicative also. An MAE value of 1.2 indicates that the error is about 1.2× the observed
value. Multiplicative error metrics are most appropriate for distributions that have errors
that are proportional to magnitude.

3. Results
3.1. MERIS-to-MODIST Comparison
3.1.1. Pixel Technique MERIS and MODIST

The pixel-to-pixel matchups for all MERIS-MODIST CI pairs in Supplementary Table
S1 produced a slope of 2.76 with an R2 of 0.82 (Figure 4 (left)). The residuals (or difference
between pairs) in Figure 4 (right) suggests a skewed error distribution, with a high density
of pixels below the zero residual line. The correction factor using the pixel technique to
convert from MODIST to MERIS is

MERISpixel = 2.76×MODISpixel (5)

The value of 2.76 (vs. unity) is expected, as the CI algorithm uses different wavelengths
for the λ3 term in Equation (2): 748 nm band for MODIST vs. 709 nm band for both MERIS
and OLCI. Because water absorbs about 3-fold more at 748 nm than 709 nm, the ρ (water
reflectance) at 709 nm will be about 3× that for ρ at 748 nm, resulting in a similarly higher
value for the MERIS CI compared to that for MODIST. The error metrics are presented in
Table 2.
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Table 2. Metrics described in Section 2.5 between the MERIS–MODIST intercalibration for the pixel
technique and integrated technique described in Sections 2.3 and 2.4, respectively.

Metrics MERIS-MODIST Pixel
Technique

MERIS-MODIST Integrated
Technique

Slope 2.76 2.92
n 15,337 42

Mean Bias 1.00 1.01
MAE 1.756 1.31

Remote Sens. 2021, 13, x FOR PEER REVIEW 9 of 19 
 

 

Table 2. Metrics described in Section 2.5 between the MERIS–MODIST intercalibration for the pixel 

technique and integrated technique described in Sections 2.3 and 2.4, respectively. 

Metrics MERIS-MODIST Pixel Technique MERIS-MODIST Integrated Technique 

Slope 2.76 2.92 

n 15,337 42 

Mean Bias 1.00 1.01 

MAE 1.756 1.31 

 

Figure 4. The left panel shows the calibration based on the pixel-by-pixel matchups between the MODIS Terra and MERIS 

sensors. The right panel shows the residual errors around the calibration shown on the left. Note the negative bias. 

3.1.2. Integrated Technique MERIS and MODIST 

The integrated technique uses the same 42 image pairs from Section 3.1.1 (see Sup-

plementary Table S2). The intercalibration correlation between the two returned a slope 

of 2.92 (compared to 2.76 for the pixel technique) and an R2 of 0.97 (Figure 5). Therefore, 

the correction factor to convert from MODIST to MERIS using the integrated technique is: 

MERISintegrated = 2.92 × MODIST,integrated (6) 

As noted before, the value of 2.92 is consistent with the difference in the λ3 term, with 

error metrics in Table 2. Both the integrated technique and the pixel technique had a neg-

ligible mean bias (1.009 and 1.003, respectively). However, the pixel technique had a much 

larger error, with an MAE 44% greater than the integrated technique. The technique also 

generated a slightly smaller slope (5.5%) than the integrated technique (2.76 vs. 2.92). The 

integrated technique also showed a uniform distribution of values close to the regression 

line, indicating linearity and consistency across the range. The difference between the two 

techniques lies primarily in the challenge of using the pixel technique to successfully 

match the pixels because discrepancies caused by any bloom movement or differences in 

ground field-of-view between sensors can manifest as errors due to local biases. Supple-

mentary Table S3 shows examples of image pairs that were not selected as they were 

deemed flawed, along with the rationale for rejection. 

Figure 4. The left panel shows the calibration based on the pixel-by-pixel matchups between the MODIS Terra and MERIS
sensors. The right panel shows the residual errors around the calibration shown on the left. Note the negative bias.

3.1.2. Integrated Technique MERIS and MODIST

The integrated technique uses the same 42 image pairs from Section 3.1.1 (see Supple-
mentary Table S2). The intercalibration correlation between the two returned a slope of
2.92 (compared to 2.76 for the pixel technique) and an R2 of 0.97 (Figure 5). Therefore, the
correction factor to convert from MODIST to MERIS using the integrated technique is:

MERISintegrated = 2.92×MODIST,integrated (6)

As noted before, the value of 2.92 is consistent with the difference in the λ3 term,
with error metrics in Table 2. Both the integrated technique and the pixel technique
had a negligible mean bias (1.009 and 1.003, respectively). However, the pixel technique
had a much larger error, with an MAE 44% greater than the integrated technique. The
technique also generated a slightly smaller slope (5.5%) than the integrated technique (2.76
vs. 2.92). The integrated technique also showed a uniform distribution of values close to
the regression line, indicating linearity and consistency across the range. The difference
between the two techniques lies primarily in the challenge of using the pixel technique
to successfully match the pixels because discrepancies caused by any bloom movement
or differences in ground field-of-view between sensors can manifest as errors due to local
biases. Supplementary Table S3 shows examples of image pairs that were not selected as
they were deemed flawed, along with the rationale for rejection.
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Figure 5. The matchups between the MODIS TERRA and MERIS sensors using the integrated
technique detailed in Section 2.4. The images used to generate these plots are seen in Supplementary
Table S1. The symbol shapes represent the three different basins used with triangles from western
Lake Erie, circles from Green Bay, and squares from Saginaw Bay.

3.1.3. MERIS and MODIST Statistics on Intercalibration

The calibration approach using “leave-one-lake-out” gave quite similar results be-
tween regions (Table 3, Figure 6A–C). Figure 6D–F shows the observed MERIS CI to
modeled MERIS CI (using MODIST CI) relationships for each of the three regions. All
regions behave similarly, with Green Bay having a slightly higher bias relative to western
Lake Erie and Saginaw Bay and western Lake Erie has the lowest MAE of the three regions.
In the case of this intercalibration, the validation data was outside the calibration range;
however, the intercalibration still performed sufficiently, showing linearity and consistency
in slope. This consistency indicated extrapolation outside the calibration range is valid.

Table 3. Least-square fit parameters from MERIS–MODIST intercalibration using different combina-
tions of the regions as seen in Figure 6A–C. WLE, SB, and GB, respectively, represent Western Lake
Erie, Green Bay, and Saginaw Bay. Percentages in the slopes indicate the difference of that pair from
a calibration based on all regions.

Metrics WLE + SB WLE + GB GB + SB All

n 24 28 32 42
Slope 2.92 (0%) 2.90 (−0.7%) 2.99 (+2.4%) 2.92

R2 0.97 0.97 0.93 0.97
Lower 95% confidence interval 2.69 2.71 2.69 2.75
Upper 95% confidence interval 3.16 3.09 3.30 3.09
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Figure 6. Various calibration fit parameters. Panel (A) shows the fit between MODIS and MERIS using image pairs from
western Lake Erie and Saginaw Bay. Panel (B) shows the fit between MODIS TERRA and MERIS using image pairs from
western Lake Erie and Green Bay. Panel (C) shows the fit between MODIS TERRA and MERIS using image pairs from Green
Bay and Saginaw Bay. Panel (D) shows the observed MERIS CI to predicted MERIS CI from Green Bay. Panel (E) shows the
observed MERIS CI to predicted MERIS CI from Saginaw Bay. Panel (F) shows the observed MERIS CI to predicted MERIS
CI from western Lake Erie.

3.2. OLCI-to-MODIST Comparison
3.2.1. Pixel Technique OLCI to MODIST

The pixel-to-pixel intercalibration between OLCI and MODIST image pairs (Supple-
mental Table S2) produced a slope of 2.75 and an R2 of 0.86 (Figure 7). As was the case in the
MERIS-to-MODIST analysis, the residuals show a skewed error distribution, with a high
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density of pixels in the mid-range (0.00–0.001), showing a negative bias. The relationship
to go from MODIST to OLCI using the pixel technique is seen in Equation (7).

OLCIpixel = 2.75×MODIST, pixel (7)

Unlike the MERIS–MODIST intercalibration, where both techniques showed negligible
bias, the integrated technique for OLCI to MODIST led to a significantly smaller bias (down
~24% to 0.94). Likewise, the MAE showed ~29% less error using the integrated technique
relative to the pixel technique.
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3.2.2. Integrated Technique OLCI to MODIST

The intercalibration using the integrated technique (Figure 8) uses the same image pairs
as the pixel technique (Supplemental Table S2). The R2 increases from 0.86 to 0.98 relative to
the pixel technique, and the slope decreases slightly from 2.75 to 2.71. The equation to go
from MODIST to OLCI using the integrated technique is shown in Equation (8).

OLCIintegrated = 2.71×MODIST,integrated (8)

Remote Sens. 2021, 13, x FOR PEER REVIEW 12 of 19 
 

 

OLCIpixel = 2.75 × MODIST,pixel (7) 

Unlike the MERIS–MODIST intercalibration, where both techniques showed negligi-

ble bias, the integrated technique for OLCI to MODIST led to a significantly smaller bias 

(down ~24% to 0.94). Likewise, the MAE showed ~29% less error using the integrated 

technique relative to the pixel technique. 

 

Figure 7. The left panel shows calibration based on the pixel-by-pixel matchups between the MODIS. Terra and OLCI 

sensors. (The images used to generate these plots are seen in Supplementary Table S2). The right panel shows the residual 

errors around the calibration shown in the left panel. 

3.2.2. Integrated Technique OLCI to MODIST 

The intercalibration using the integrated technique (Figure 8) uses the same image 

pairs as the pixel technique (Supplemental Table S2). The R2 increases from 0.86 to 0.98 

relative to the pixel technique, and the slope decreases slightly from 2.75 to 2.71. The equa-

tion to go from MODIST to OLCI using the integrated technique is shown in Equation (8). 

OLCIintegrated = 2.71 × MODIST,integrated (8) 

No residual bias around the regression line is evident, unlike for the pixel-to-pixel 

intercalibration. Most values fall close to the regression line, and those at the lower end 

are equally distributed above and below the line, with two points well above (points 15 

and 11) and three below (points 8, 17, and 12) (Figure 8; Supplementary Tables S1 and S2). 

 

Figure 8. The matchups between the MODIS TERRA and OLCI sensors using the integrated tech-
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Figure 8. The matchups between the MODIS TERRA and OLCI sensors using the integrated technique
detailed in Section 2.4. The images used to generate these plots are seen in Supplementary Table S2.
The symbol shapes represent the three different basins used with triangles from western Lake Erie,
circles from Green Bay, and squares from Saginaw Bay.
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No residual bias around the regression line is evident, unlike for the pixel-to-pixel
intercalibration. Most values fall close to the regression line, and those at the lower end are
equally distributed above and below the line, with two points well above (points 15 and
11) and three below (points 8, 17, and 12) (Figure 8; Supplementary Tables S1 and S2).

While both the pixel technique and the integrated technique produced equivalent
slopes for OLCI (2.75 vs 2.71, respectively) (Table 4), the subsequent error metrics (bias and
MAE) were much different. For OLCI, the integrated technique had a slight negative bias
(0.94), while the pixel technique had a strong negative bias (0.77). This differs from the
MODIST–MERIS, where both techniques had a negligible bias. The pixel technique also
had a much larger error (1.76) than the integrated technique (1.25), just as was seen with
MERIS. In this case, the pixel technique produced substantially large errors that may lead
to lower confidence in the resulting calibration.

Table 4. Metrics described in Section 2.5 between the OLCI–MODIST intercalibration for the pixel
technique and integrated technique described in Sections 2.3 and 2.4, respectively.

Metrics OLCI-MODIST Pixel
Technique

OLCI-MODIST Integrated
Technique

Slope 2.75 2.71
n 3388 19

Bias 0.77 0.94
MAE 1.76 1.25

3.2.3. MERIS and MODIST Statistics on Intercalibration

Figure 9A–C shows the calibration fit parameters for the OLCI–MODIST intercali-
bration for each combination of the three regions, with results summarized in Table 5.
Figure 9D–F shows the observed OLCI to modeled OLCI (using MODIST) relationships
for each of the three regions. There is more discrepancy within the regions using the
OLCI to MODIST intercalibration among the three geographical regions than there was
between the MERIS–MODIST intercalibration. Likewise, there was much more variability
geographically in the MAE, with western Lake Erie and Saginaw Bay having quite similar
values (>1% change) but with Green Bay having a much lower error with MAE some 12%
lower.

Table 5. Least-square fit parameters from the OLCI–MODIST CI intercalibration as seen in Figure 9A–C
based on the integrated technique. Percentages in the slopes indicate the difference of that pair from a
calibration based on all regions.

Metrics WLE + SB WLE + GB GB + SB All

n 8 16 14 19
Slope 2.63 (−2.9%) 2.78 (+2.6%) 2.75 (+1.5%) 2.71

R2 0.99 0.98 0.99 0.99
Lower 95% confidence interval 2.35 2.56 2.58 2.55
Upper 95% confidence interval 2.92 3.00 2.92 2.87

3.3. MERIS–OLCI Intercalibration

The final intercalibration coefficients estimated from the leave-one-lake-out approach
and based on the integrated technique are summarized in Table 6. These coefficients
are the slopes of the regression lines between all three sensors for all three regions. To
compare OLCI to MERIS, the relationships between MODIST and MERIS/OLCI were
used as an intermediary using the cross-regional averages (Table 6). Using the calibration
coefficients from Table 6 yields the following set of equations (Equations (9) and (10)
represent the updated Equations (6) and (8), respectively, after replacing the slopes with
the cross-regional average slopes.):

MERISintegrated = 2.94×MODIST,integrated (9)
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OLCIintegrated = 2.72×MODIST,integrated (10)

MODIST,integrated = 0.36×OLCIintegrated (11)

Currently, the MERIS calibration is more stable than the OLCI calibration, likely
because there has been sufficient time to properly calibrate the sensor, therefore converting
OLCI to MERIS is the more appropriate choice as compared to converting MERIS to OLCI.
Substituting the CIMODIST with the CIOLCI from Equation (11) into Equation (9) yields:

MERISintegrated = 2.94×
(

0.36×OLCIintegrated

)
(12)

Solving Equation (12) will yield the final relationship between the CIMERIS and the
CIOLCI expressed as:

MERISintegrated = 1.06×OLCIintegrated (13)
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Figure 9. Various calibration fit parameters. Panel (A) shows the fit between MODIS TERRA and OLCI using image pairs
from western Lake Erie and Saginaw Bay. Panel (B) shows the fit between MODIS and OLCI using image pairs from western
Lake Erie and Green Bay. Panel (C) shows the fit between MODIS and OLCI using image pairs from Green Bay and Saginaw
Bay. Panel (D) shows the observed OLCI CI to predicted OLCI CI from Green Bay. Panel (E) shows the observed OLCI CI to
predicted OLCI CI from Saginaw Bay. Panel (F) shows the observed OLCI CI to predicted OLCI CI from western Lake Erie.
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Table 6. Final intercalibration coefficients between sensors and regions.

Region/Lake MERIS vs. MODIST Slopes OLCI vs. MODIST Slopes MODIST vs. OLCI Slopes

WLE-SB 2.92 2.63 0.37
WLE-GB 2.90 2.78 0.35

GB-SB 2.99 2.75 0.36
Cross-regional average 2.94 2.72 0.36

4. Discussion

The need to merge cyanobacterial index (CI) data from multiple sensors for environ-
mental analyses will become increasingly common [33]. This will be necessary to determine
the efficacy of management strategies to control cyanobacterial bloom intensity, such as
nutrient reductions on decadal time scales. If agricultural best management practices
are amended, the need to synoptically differentiate any impacts through the changing of
these practices must be taken into account [34]. The timing, severity, location, and size of
cyanobacterial blooms can be used to test the efficacy of these changes. Further, if there
are differences in the physical manifestation of the bloom (i.e., timing, severity, location,
and size), this could be a harbinger for an ecological shift within a given ecosystem. This
study examined both the traditional pixel-to-pixel technique and a new image-to-image
integrated technique for intercalibrating the CI algorithm from the MODIST, MERIS, and
OLCI sensors. Being able to reliably compare the CI values between sensors will allow the
production of a >20 year CI time-series in numerous geographically dispersed water bodies.
These time-series will prove useful in retrospectively evaluating previous management
decisions and in documenting temporal changes in cyanobacterial bloom intensity.

In this study, the image-to-image integrated technique exhibited much lower error
and reduced bias than the pixel-to-pixel technique. The residual CI distributions pro-
duced by the pixel technique showed skewed bias in the residuals (Figures 4B and 7B),
which did not occur with the integrated technique (Figures 5 and 8). Additionally, as the
MODIST CI increased, the more negative the MERIS or OLCI residuals became when us-
ing the pixel technique (Figures 4B and 7B). The integrated technique did not exhibit such
biases over the entire range of CI values, with the higher values converging on the 1:1 line
(Figures 5 and 8). Pixel-to-pixel comparisons would be expected to have this problem because
any shifts in the distribution of the variable being measured between overflight times or
alignment issues can introduce noise confounding intercalibration (Figures 4B and 7B for
the pixel technique; 5 and 8 for the pixel technique for integrated technique). The integrated
technique, in contrast, provides a more robust analysis option for evaluating the influence of
individual image pairs on the calibration (e.g., Figure 6A–C and Figure 9A–C). In a pixel-to-
pixel technique, the statistical influence of the pixels from individual scenes cannot be readily
evaluated and would require more complex analysis. Any skewing of pixels from CI image
pairs at the low or high end (those pairs with maximum statistical leverage) would bias the
results of the comparison. Skewing could occur with even a one or two-pixel offset in the
actual (or apparent) location of an intense bloom between two images. This problem is mostly
removed by the integration technique, as the offset pixels are contained within the integrated
region of the bloom.

The calibration coefficient between the MODIST and MERIS for the pixel and inte-
grated techniques differed by 5% (Table 4), while the coefficient between the pixel and
integrated technique for the MODIST–OLCI matchup differed by 1%. However, as noted
above, the pixel technique for MODIST to OLCI had a severe bias, which can lead to ques-
tions on the accuracy of the calibration. The integrated technique did not have this problem.
OLCI appeared to miss the lowest CI values (Figure 7) that MODIST and MERIS detect.
MERIS has had much more time for calibration, and it is now at the fourth reprocessing. As
the OLCI calibration is developed and improves, it is likely to see shifts in the calibration,
potentially reducing the difference. Most calibration is conducted on a band-by-band basis.
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Subtle inter-band differences within the uncertainties of the band calibration can affect a
shape algorithm such as the CI [35]. A spectral shape method can detect these residual
differences, providing a means of improving the inter-band calibration [35]. The integrated
technique can provide a more reliable method for intercalibrating other biophysical vari-
ables across sensors as well. A similar approach has been used to calibrate MODIS [36,37].
Specifically, data sets were integrated over space and time to compare satellites for such
issues as trends and calibrating for cross-scan polarization.

We carried out sensitivity analysis using bootstrap simulation to find out how stable
the slope parameters were with respect to the effect from the points of leverage or influence.
We repeated the simulation for 1000 runs for MERIS–MODIS analysis. OLCI–MODIS
sensitivity analysis was repeated 171 times based on the number of unique permutations
possible with a sample size of 17. At every step of the iteration, 39 out of 42 of the MERIS–
MODIS samples and 17 out of 19 samples were randomly selected without replacement. By
doing so, 5% and 10% of MERIS–MODIS and OLCI–MODIS pairs were left out to evaluate
their influence on the regression slope. The median slope from the sensitivity analysis
was identical to the reported slopes in Figures 5 and 7 (Table 7). The variability of the
MERIS–OLCI slope is expected to be within 2.87–2.99, which is −1.7% and +2.4% of the
median value of 2.92. Similarly, the OLCI–MODIS slope is likely to be within 2.61–2.81
(−3.7% or +3.5% around the median of 2.71). While more samples may lead to more robust
statistics, special attention was given to image quality, and only the very best image pairs
were selected for analysis.

Table 7. Descriptive statistics of regression slopes from the bootstrap simulation.

MERIS–MODIST Slope
Variability

OLCI–MODIST Slope
Variability

Bootstrap iterations (n) 1000 171

Sample Draw Size 39 from 42 17 from 19

Mean 2.92 2.72

Standard Deviation 0.04 0.06

5th percentile 2.87 2.61

25th percentile 2.90 2.70

Median 2.92 2.71

75th percentile 2.93 2.74

95th percentile 2.99 2.81

This study shows the CI intercalibration is consistent between the three basins in the
Laurentian Great Lakes and that the integration technique is robust. The intercalibration
coefficients presented here were consistent with no outliers compared to those derived
with the pixel-to-pixel technique used in Wynne et al. [10]. We should note that the CI
algorithm does not require an atmospheric correction [26]. It was based on the Maximum
Chlorophyll Index (MCI) presented by Gower et al. [38], who used top-of-atmosphere
reflectance. The calibration coefficient between MODIS and MERIS derived here was much
higher than in Wynne et al. [10], primarily due to an issue with the measurement units.
The original MERIS reflectance data sets were expressed as L2 files from the original ESA
processing as having units of per steradian (sr−1) (although presented as dimensionless).
This translates as having the initial L2 products being off by a factor of π sr. By multiplying
the 1.33 correction factor derived by Wynne et al. [10] by π, the new factor becomes 4.17,
which is considerably closer to the correction factor of 2.94 derived here. The remaining
~30 % difference (between 4.17 and 2.94) could be explained by several reasons. ESA has
recalibrated and reprocessed the MERIS data several times since the analysis of Wynne [10].
This study also used rigorous quality assurance for both the image pairs selected and the
pixels used for analysis. Further, Wynne et al. [10] used only MODIS Aqua imagery, which
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is collected about 3 h later than MERIS and OLCI. By employing MODIS Terra imagery
in this study, which has comparable overpass times to MERIS and OLCI, it was possible
to reduce any impacts of wind events or biomass changes in surface waters unaccounted
for in the original calibration study. This, in turn, reduced misfit, thereby improving the
calibrations.

While this study focuses on intercalibrating the CI algorithm among three large
satellite missions in the Great Lakes, the techniques presented here could be adapted to
other areas and sensors. The integrated technique could be applied to any remotely sensed
image products from any number of sensors and algorithms. The integrated technique
is not designed to better approximate an in situ measurement but instead to determine
how well an algorithm from one sensor approximates the same algorithm on a different
sensor. As a result, the integrated technique could also be applied to small satellites, such as
CubeSats, which generally have poor absolute radiometric calibration, but show linearity.
Two excellent review articles highlight water quality parameters that could be tested using
the integrated technique for sensor intercalibration [39,40].

5. Conclusions

Using an integrated technique for intercalibration provides better metrics and more
consistent results for calibrating an algorithm between the sensors than the pixel technique.
The more typical pixel-to-pixel technique did produce equivalent calibration coefficients
(slopes) for MODIST to OLCI but with greater uncertainty. The comparison of three separate
lakes separated by up to 500 km showed a robust and consistent result. This integrated
technique allows us to calibrate across the three sensors, MERIS, OLCI, MODIST, and by
inference, also MODIS-Aqua (as NASA calibrates Terra to Aqua). The results further allow
us to adjust OLCI data sets to match MERIS. For the calibration identified here, OLCI
underestimates the CI relative to MERIS by 6% (Equation (13)). The results of this study
allow the development of a consistent time-series across MERIS, MODIS, and OLCI for the
CI product. The calibration should work in other lakes which are large enough for detection
by these sensors. The correction can be updated using the same scenes with changes in
calibration. The results will help in the analysis of time-series and in the comparison of
MERIS and OLCI for climate changes in cyanobacterial blooms. The integrated technique
can be applied to other algorithms and sensors to allow continuity in longer-term datasets.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs13122305/s1, Table S1: MODIST-MERIS image pairs used for intercalibration, Table S2:
MODIST–OLCI image pairs used for intercalibration, Table S3: shows an explanation of why image
pairs were accepted or rejected from inclusion in Table 2.
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